
Accelerating Cloud Native in Telco
Challenges of Cloud Native Telco Transformation today and how to overcome them - A CSP

perspective

v1.0 - December 4, 2023

Preamble

This document is a product of the initial joint work of several Communication Service

Providers (CSPs) who are active in the Cloud Native Computing Foundation (CNCF)’s

Cloud Native Network Function Working Group (CNF WG), NGMN Alliance, and projects like

Linux Foundation (LF) Europe’s Sylva and Linux Foundation Networking (LFN) Anuket

project. It is a draft that has been published to invite feedback from other CSPs and

motivate discussion and improvements from the broader telecommunication industry. We

hope that through public discourse we can make the document more complete, relevant,

and ready for final release. If you would like to contribute to the discussion and

document, please feel free to open an issue or create a pull request.

Introduction

The recently published Cloud Native Manifesto from Next Generation Mobile Networks

(NGMN) Alliance does an excellent job outlining the vision and target picture for

cloud native telecommunication networks. The transformation towards a cloud native

production model has already commenced in many Communication Service Providers (CSPs).

Practical challenges and pain points on this journey, which hinder progress towards

the target expressed in the NGMN Cloud Native Manifesto, have been identified and are

being felt. These hindering aspects are especially prominent in the CSPs which are

already taking practical transformation steps and are trying to follow the vision

described closely.

We, the group of CSPs gathered around Cloud Native Computing Foundation (CNCF)’s Cloud

Native Network Function Working Group (CNF WG), live on the frontlines of this

transformation and have gathered valuable experience. We firmly believe that to attain

the envisioned outcome, the entire industry needs to work together to align around key

strategic and operational principles. Besides building a sound understanding of what

it would take for the transformation of CNFs to become cloud native, it's also

important to emphasize the ecosystem that would support that evolution.

The industry is still maturing and searching for the right formula to reach a cloud

native operating model. CNF vendors have not been able to comply with the cloud native

and openness requirements of CSPs yet, because these requirements are not yet stable

and still emerging; however, the reasons for this hesitance can be found in an

aversion to giving up a lucrative professional services business model and control

over vertical integration. This hesitance cannot override a CSP's need to evolve

toward a cloud native architecture, largely based on 12-factors for CNFs (see Annex 1

and Reference 5), that can be supported by changing existing commercial models that

could greatly benefit CSPs and vendors alike to create a new win-win equilibrium.

Vendors must provide open APIs, clear documentation, and cloud native architectures

and implementations that empower CSPs with self-service capabilities in the cloud

ecosystem. For the new model to work, vendors and CSPs must provide mutual SLAs: the

CSP must guarantee a certain level of quality at the platform layer, while CNF vendors

need to guarantee that the application will perform on the platform with SLAs that

https://www.ngmn.org/highlight/ngmn-publishes-cloud-native-manifesto.html

meet defined KPIs. This will help drive agility and innovation, and reduce Opex costs

within CSP. CNF vendors can monetize the value of openness to evolve business models

that move away from closed solutions and professional services.

As such, we want to highlight major challenges facing cloud native telco

transformations today and formulate principles and requirements that will aid the

industry in achieving alignment and overcoming obstacles. In this whitepaper, we are

defining Kubernetes as the de-facto runtime environment for hosting the Cloud Native

Network Functions (CNFs). We also use the term cloud-native infrastructure in broader

context for the infrastructure that abstracts Infrastructure-as-a-Service (IaaS)

layer, that has Kubernetes in its core with useful API abstractions on top of it as as

well as auxiliary systems all as a framework that makes managing applications easier

and promotes doing so in a cloud native way. This is important because you are free to

use Kubernetes (and other "cloud native" technologies) in a very uncloud-native way.

Our longer-term goal, underlying this whitepaper, is for all layers of the environment

to encompass the cloud native principles from infrastructure allocation + management,

through the application workloads. A more in-depth analysis of these terms can be

found in the book "Cloud Native Infrastructure" by Justin Garrison and Kris Nova.

Challenges in Cloud Native Telco Transformation Today

Pre-Validation. Historically, Network Functions have been developed and pre-integrated

with well-defined infrastructure, which was known in advance. That pre-validation was

done by a Network Function vendor and the system was delivered as a

validated/certified bundle together with performance and stability guarantees. In the

cloud native world, there are too many permutations which makes it impractical to

follow the traditional certification path. However, Cloud Native Network Function

(CNF) vendors are still sticking to it by picking a small number of opinionated

infrastructure flavors (different from vendor to vendor!) to pre-validate against,

making any infrastructure outside this selection too complicated, too costly, and too

slow to deliver for CSPs. This creates problems in the adoption of those CNFs as CSPs

generally prefer to each have a unified cloud native infrastructure layer, which they

are free to choose and often it can differ from the opinionated infrastructure already

validated by the CNF vendors.

Adaptations. CNFs are typically delivered as a collection of artifacts such as YAML,

Helm charts, and container images. These artifacts are intended for deployment in

CSP’s cloud native environment. However, every CSP has somewhat different rules,

policies, security standards, API versions, and approaches to lifecycle operations

(e.g. use of NFVO capabilities, GitOps pipelines, etc.). Due to that, it is often not

possible to deploy the CNF directly in any environment in a consistently replicable

way, but it requires some adaptations. That shall normally not pose a problem, as most

of these adaptations can be performed in deployment configuration often in YAML files,

by either CSP’s DevOps team or the vendor’s delivery personnel. Nonetheless, we often

encounter situations where CSPs are not allowed to perform such adaptations (under

threat of losing support if doing otherwise) since these artifacts are part of the

release and could be adapted only in new release delivery or through the custom change

request. As a result, this situation often leads to a frustrating cycle of discussions

and significantly hampers the CNF onboarding process.

Validation. This step did not exist in the previous scenarios due to reliance on pre-

validation and pre-integration. Due to the number of permutations found in cloud

native ecosystems, pre-validation has limited value. Only validation of CNFs on CSP

https://www.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/

premises with CSP’s flavor of cloud native infrastructure and its specific

integrations has high relevance and value for concluding if the CNF can be deployed

and promoted to production. Today, we still see that many CNFs are not ready to be

validated in the local CSP environment and rather insist on conformance with the pre-

validation stack. This practice is unsustainable and requires a fresh and flexible

local validation approach. Automation (Continuous Testing) is especially important

when validating frequently released cloud native applications and checking conformance

with frequently updated cloud platforms.

Automation. In the ongoing pursuit of end-to-end orchestration and deployment, and

configuration automation, the Telco industry has devised numerous frameworks, models,

and standards. Some have achieved considerable success, while others have seen varying

levels of adoption. However, the cloud native ecosystem, with a focus on GitOps

practices, is propelling CNFs toward more advanced and automated models.

Many CNFs are still reliant on manual artifact deployment and are rooted in

traditional telco methods, such as NETCONF and YANG for configuration management.

These practices pose significant challenges for CSPs aiming for a fully automated CNF

lifecycle. Moreover, the ETSI standard follows an imperative top-down approach, often

characterized as "fire and forget”. This approach doesn't readily support

reconciliation and depends on orchestration entities operating externally to

Kubernetes "out-of-band." Even when the CNFs are following the Kubernetes native

approach, we face challenges with the quality of artifacts like Helm Charts which are

not generalized nor easily customizable, as well as with divergent configuration

schemas. This all creates further complexities in the transition to the declarative

and GitOps-driven automation models prevalent in the cloud native ecosystem.

Dependencies. Cloud Native applications shall be completely separated from the

underlying infrastructure, especially hardware. Nevertheless, in practice today there

are often very hard dependencies present, be it on specific technologies or specific

vendor products. The CNFs often require a specific hardware type or brand (e.g. CPU,

NIC) and do not allow for flexibility supported by local validation. CNFs are not able

to run on any CNCF-certified Kubernetes distributions. Even if the dependency is

fulfilled there is a lack of attention to those dependencies. For example, a CNF can

break because the firmware of the network card was updated, which shows that pre-

validation of a particular combination of dependencies was not performed and proactive

CNF update measures have not been taken. This creates a lot of operational burdens and

negatively impacts KPIs for cloud native CNF deployments.

Lifecycle. Kubernetes occupies a central place in cloud native infrastructure by

following the paradigm of ephemeral resources and relying on “rolling upgrades” to

deploy changes. This paradigm is applied in both the lifecycle management of

applications and the cloud infrastructure. As a consequence, for example, Kubernetes

cluster nodes can ordinarily have rather short uptime of several days to several

weeks. This is in contrast with the traditional carrier-grade-driven focus on the

uptime of individual system elements. Although large parts of CNFs do not have

problems with that cloud native lifecycle approach, we are experiencing that many CNFs

have some elements which are rather sensitive to it. CNFs that are not resilient to

ephemeral Kubernetes nodes (e.g. crashing when cluster scaling or upgrade occurs) lead

to service interruptions during the lifecycle operations, which is not acceptable,

such as on SCTP pods due to s1 interface interruptions which leads to unsupported

ISSU. It is often the case that Pod Disruption Budgets are not properly set, the

consequence of which is either service interruption or lifecycle operations being

blocked.

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

Tracing. The more cloud native transformation progresses, the more challenging it is

to perform the e2e protocol tracing using traditional mechanisms based on tapping

points on the network fabric level. The reason for that is the dynamic nature of cloud

native workloads including CNFs. When several CNFs run within one large data center

the pods could be distributed to any of the servers in any of the racks. This means

that particular communication can go via multiple network elements and as the

traditional tapping setup is not configurable or capable enough, it is practically

impossible to create reasonable port mirroring to capture the traces. In many cases,

the CNFs or their microservices run on the same node and their communication does not

go via data center network fabric at all. Furthermore, encryption and mTLS became a

de-facto standard for CNFs, so even if tapped, network traffic can not be really

analyzed and so the purpose of tracing can not be fulfilled. Cloud native tracing

mechanisms (e.g. eBPF) are unfortunately not helping here as most of the telco-

relevant traffic goes via secondary interfaces (Multus) which are often directly

assigned to the CNF, skipping the host kernel drivers. This is specifically true for

user plane CNFs like a UPF, Firewall, or Internet Gateway.

Architecture. We are witnessing that there are still CNFs that are in their

architecture exhibiting properties of Virtualized Network Functions (VNFs). For

example, we see the “pinning” of Pods to specific cluster nodes. We also still see 1+1

redundancy models for Pods within the cluster instead of N+1. Although it is

technically possible to run such Network Functions on cloud native infrastructure,

this increases the burden of operating them and risks having a negative impact on

service quality, as small disruptions which are normal in cloud native infrastructures

result in problems within the CNFs. Furthermore, the scalability of today’s CNFs is

still sub-optimal. In many cases, it still relies on vertical scaling and manual

interventions. Sudden increases in demand cause performance degradation and even

downtime if the system is not dimensioned in advance for that peak load.

Security. In the experience so far we have noticed that CNFs, in their default setup,

have quite a relaxed posture when it comes to dealing with cluster security-relevant

aspects like Roles, ClusterRoles, privileged access, cluster node level access, and

similar functionalities. We frequently observe that the principle of least privilege

is not consistently followed and that Roles frequently require rights for everything

(“*”) and ClusterRoles are used without real need. CNFs sometimes use problematic

practices (such as hostPath mounting to write their logs, hostPorts for communication,

privilege escalation, running containers as root, managing the configuration of the

node networking stack, and performing dangerous sysctl calls), none of which are

allowed in a properly hardened environment. It looks like such CNFs assume that the

infrastructure can be consumed from a cluster admin perspective without any

restrictions, which in realistic circumstances is never the case. Such expectation

could be reasonable in a combo/silo package where CNF and infrastructure come together

from one hand as a managed package. However, in other cases, CNFs are usually “guests”

on the infrastructure and as such must have appropriate security imposed restrictions

and limitations.

Resilience. In contrast to traditional expectations within the telecommunications

domain, one important property of the cloud infrastructure is that it is imperfect.

Cloud infrastructure does not give strict performance and stability guarantees.

However, it offers mechanisms to applications through which they can achieve a high

degree of resilience to this imperfection. Yet, repeatedly we experience the cases in

which the imperfection of cloud infrastructure has a severe impact on the CNFs to the

point that complete re-deployment is the only viable solution. Instances of such

impact include CNFs completely crashing due to the ephemeral storage on the Kubernetes

cluster reaching full capacity with logs of that CNF or because write operations to

persistent volumes could not be performed for a short period. This state is

unsustainable as such events and situations are going to happen in the cloud

environment all the time. Therefore, applications including CNFs, which aim to run in

the cloud, have to account for such events in their design and utilize cloud native

mechanisms to maintain robustness consistently or facilitate automated recovery.

Principles and Requirements to Enable Progress in Cloud

Native Telco Transformation

These principles and requirements address the systemic challenges listed above. They

are intended to serve as the guardrails which every industry/ecosystem player, who

aims to engage in cloud native telco transformation together with CSPs, shall respect.

In this way, setting the minimal set of conditions, we want to eliminate main blockers

and fragmentation, which is a chronic condition in the telco ecosystem, and thus

accelerate the path towards benefits for all. We aim to work with existing industry

initiatives such as Anuket RA2 / GSMA NG.139 Kubernetes Reference Architecture to

ensure these principles are developed in collaboration with existing communities, and

included in existing well-established publications.

1. Pre-validation. The pre-validation of CNF needs to be performed against a

reference that is common for all players, which is upstream Kubernetes and

further components from the CNCF ecosystem.

1. Each CNF shall be validated, including the implementation of any

adaptations that may be required, within 4 months of a new Kubernetes

release.

2. Every CNF shall certify adherence to cloud native principles and best

practices using CNF Test Suite (https://github.com/cncf/cnf-testsuite)

as a vendor-neutral validation tool.

3. Pre-validating CNF against additional commercial distributions such as

OpenShift, Tanzu, Rancher, and Hyperscaler solutions is a plus, but not

mandatory.

2. Adaptations. It shall be possible for CSP’s DevOps or vendor’s delivery teams

to adapt CNF artifacts (e.g. YAML manifests, Helm charts, NFVO descriptors) to

align the deployments to the local specifics of CSP (e.g. Policy, RBAC,

Compatibility) without special Change Requests or involving complex R&D

processes.

1. Validation of such adapted CNF deployment shall be performed on CSP

premises.

2. Given the successful validation vendor support for such deployment shall

be granted.

3. CNFs shall be modular, microservice-based, open applications and not big

“black” boxes.

4. CNF vendors shall provide all artifacts (Helm charts, CRDs, Operators)

passing strict linter in open documentation and provide APIs, instead of

encapsulating them in proprietary tools.

3. Validation. CNFs shall be delivered with a series of automated tests that can

be used to validate the CNF operation on the spot in CSP’s context.

https://github.com/cncf/cnf-testsuite

1. This validation shall count as only relevant one, preceding any pre-

validation or lack of it.

2. The validation shall ensure that all artifacts are passing strict

linters to prove that portability is assured.

3. It shall serve as a condition for support and SLA.

4. The validation shall be a continuous process and shall be instantly done

on any change be it on CNF or on the infrastructure side.

5. The validation tests shall cover CNF basic functionality, lifecycle, and

disaster recovery

4. Automation. CNF deployment and configuration shall be fully automated

(“everything as a code”) and done exclusively with declarative cloud native

mechanisms like GitOps.

1. Mainstream open source deployment tools from the CNCF ecosystem, like

FluxCD or ArgoCD, shall be supported per default.

2. All configurations shall be done via Configmaps and/or similar cloud

native constructs (e.g. Kubernetes Resource Models)

3. CNF is allowed to use traditional telco mechanisms internally as a

transition step, however, that should be fully encapsulated and

abstracted away.

4. Microservices should be loosely coupled (with NO tight dependency on

each other) to ensure scalability and ease of deployment, e.g. without

the need to wait for NETCONF day-1 configuration till further

microservices get deployed.

5. Artifacts are delivered via OCI(Open Container Initiative)-compliant

repositories.

6. The CNF LCM should be described declaratively and support continuous

intent-based deployments for example IP address assignment during

deployment.

7. Newly released software version (CNF/microservices) includes machine-

readable code to run health checks.

8. Release notes and impact reports should be included as machine-readable

code in every published release.

9. The CSP-internal automation pipeline shall be allowed to hook into the

vendor software delivery solution (e.g. to subscribe to CNF releases).

10. Artifacts delivered with CNFs (e.g. Helm charts) shall be customizable

for efficient multi-purpose deployments.

11. CNF configuration schemas have to follow the standards that shall be

aligned among CSPs and vendors.

5. Dependencies. The CNFs shall be completely independent from underlying

infrastructure platforms.

1. Alternatively it shall equally support all the mainstream available

x86/amd64 compute hardware with single socket servers as golden

standard.

2. Local validation, not product policy, shall answer if CNF can run as

expected on particular hardware or not.

3. In case of hard technical dependencies, the vendor of such CNF shall

timely pre-validate its CNF against all new releases of hardware-related

software (e.g. drivers, firmware) and proactively adapt the CNF to avoid

the negative impact of dependency in production.

4. Application resource requirements must be configured declaratively. The

application must not be statically configured to utilize specific

resources including devices, nodes, or machines

5. When performance is a requirement, the application should specify the

resource request values and utilize open standards for adapters where

possible at all levels they are available. For example support for

multiple CNIs vs a single CNI.

6. To be able to deploy on any CNCF Certified Kubernetes distributions

7. CNFs make use of standard APIs for infrastructure and platform

capabilities. For example Service Mesh Interface, Ingress, CNI, etc.

6. Lifecycle. CNFs have to be constructed in a way that fully tolerates graceful

cluster rolling upgrade procedures without blocking them and without service

interruptions.

1. CNF shall implement N+1 redundancy mechanisms.

2. CNF shall rely on mechanisms around PodDisruptionBudgets to secure the

conditions for itself to run uninterrupted during lifecycle procedures.

3. The application must function properly if it is rescheduled to other

nodes without interruption of its services (e.g. move user sessions

without interruptions).

4. Upgrade procedures on CNF shall also follow rolling-upgrade principles

and shall be done in-service.

7. Tracing. The CNFs shall be instrumented to emit the protocol tracing data

directly from their microservices to the configurable targets (e.g.

application-level tracing https://opentracing.io/)

1. These traces shall be sufficient for typical e2e analysis that is done

with standard telco tools such as NetScout, Gigamon, Polystar etc.

8. Architecture. The CNFs need to be architected in line with 12-factors for CNF

compliance with cloud native (Annex 1 and Reference 3) and in a way not depend

on any particular cluster node or reasonably small group of cluster nodes.

1. Microservices should be small and independently deployable units of

functionality.

2. Any common functionality (e.g. observability, access management) should

be provided as a centralized service that can be reused. CNFs should

share databases, load balancers, business logic, and common services and

become fully disaggregated.

3. A microservice should have a single, well-defined responsibility, and

should only communicate with other microservices to accomplish tasks.

4. The data-processing logic should be in the microservices themselves,

rather than in a centralized hub, to ensure scalability and reliability.

5. Microservices should be designed to dynamically scale up or down in

response to changes in demand, to ensure that the application remains

responsive and available using "Horizontal Pod Autoscaling" (HPA).

6. Each microservice should log information and expose metrics about its

performance and usage, which can be used to identify and diagnose

issues.

7. CNFs should expose their state (e.g. health) in a cloud native way.

8. CNFs can share databases, load balancers, business logic, and common

services and become fully disaggregated.

https://opentracing.io/

9. CNF has to tolerate automatic scaling at the node and container level by

the Kubernetes orchestrator.

10. CNF has to support self-healing.

9. Security. To run in a generic cloud native environment, CNFs have to strip down

their expectations and require exactly the minimum rights that are needed for

functioning.

1. Any practice that poses the risk such as usage of hostPaths, privilege

escalations, root containers, etc. needs either to be eliminated or

replaced with an alternative cloud native approach.

2. The application must adhere to cluster policies enforced by the cluster

manager including overriding its default policies

3. The application should follow the Principle of Least Privilege.

4. RBAC definitions must declare the minimal set of rights needed for the

application to function The application should not request open-ended /

all rights in its RBAC definitions.

5. Applications should not require privileges to run including privileged

pods and cluster roles.

6. Applications that require privileges must declare which components

require privileges in both machine-readable and human-readable open

formats.

7. The application must be isolated with Namespaces and not use the default

namespace.

10. Resilience. High-quality CNFs should be resilient to underlying infrastructure

issues including complete failure, meaning that instead of completely failing,

they note that something is wrong, log the errors, etc, and then return to full

working order upon restoration of the underlying infrastructure

service/resource.

1. CNFs use cloud native principles (e.g. Kubernetes capabilities) when

implementing resilience architecture without. fully focusing on 3GPP

(e.g. CNFs do not rely solely on robust infrastructure).

2. CNFs are resilient to network corruption / poor quality network

connection (e.g. packet drops, high latency, etc.).

3. CNFs are resilient to complete loss of network connection.

4. CNFs are resilient to poor-quality storage connection (e.g. high

latency, read/write performance degradation, etc.).

5. CNFs are resilient to complete loss of storage connection.

6. CNFs are resilient to storage disks being full.

7. CNFs are resilient to CPU stresses.

8. CNFs are resilient to Memory stresses.

9. CNFs are resilient to the complete loss of underlying infrastructure

resources (e.g. a node failure).

ANNEX 1

12 Factors for CNFs compliance to Cloud Native Principles

CNFs need to adopt these principles as well. CNFs need to be:

Compatible: A cloud native approach allows applications and workloads to run

anywhere. Ideally, CNFs should work with any certified Kubernetes product, even

if we need to use container network interface (CNI) plug-ins or other

extensions. CNFs should work on any CNI-compatible network that meets their

functionality requirements. Network interfaces and CNI plug-ins create hardware

dependencies and tie them to specific infrastructure. A wise, but far-reaching,

approach would be to develop all networks and I/O acceleration purely in

software. Broader adoption of this software separation might take years to

mature. In the short term, we can improve the automation to maximize the

agility of the applications.

Stateless: Cloud native applications need resiliency to quickly fail and

recover elsewhere in the cloud. The legacy approach uses local storage, which

makes network functions heavy and slow. To improve workload mobility, we need

to store the state in custom resource definitions (CRDs) or a separate

database.

Secure: At its most basic, this principle says “CNFs must run unprivileged”; in

other words, the CNFs must be deployable on modern cloud platforms without the

need for root administrative privileges. In the cloud native approach, multiple

CNFs must be able to run concurrently on the same hardware. During the

transition from PNFs to VNFs, applications required root-level access to Linux,

as if they were running on dedicated servers. The same trend continued in the

transition to CNFs. We need to remove this dependency on root access by

redeveloping the application code to use more modern, cloud native security

protocols.

Scalable: Cloud native telco applications need to support horizontal scaling

(across multiple machines) and vertical scaling (between different machine

sizes). We want to optimize cost and performance by starting with a very small

application and growing it as needed. This model yields efficiency and agility.

Configurable: Open configuration offers telcos the control and freedom of

DevOps tools to create and manage services. This should happen via custom

resource definitions (CRDs) and operators, or other declarative interfaces.

Observable: Cloud native applications need an Open Metrics interface that

Prometheus and other monitoring tools can use. Kubernetes needs to access

performance metrics that support container-level resiliency features. Analytics

applications can process these metrics and suggest configuration changes to

improve utilization and performance.

Portable: Applications that can run on multiple clouds are more agile. CNFs

must be able to declare their platform requirements without implying a specific

implementation. The cloud fulfills those requirements, making network functions

oblivious to the underlying cloud offering. This maximizes portability between

execution environments.

Installable and Upgradeable: The use of CRDs, operators, and declarative

configurations gives flexibility and ease in the deployment and upgrade of

CNFs. Automation tooling can track and validate the installation and upgrade

processes, with rollbacks supported if needed.

Parity across environments: Cloud native applications need to minimize

divergence between development and production, enabling continuous deployment

for maximum agility. Telcos can deliver features and upgrades faster by

implementing DevOps practices over a CI/CD pipeline.

Open: Cloud native applications need to be orchestrated, run as a service, and

expose themselves via RESTful interfaces. Nephio will achieve this goal by

enabling third-party automation tools to reconfigure the application and

achieve any type of orchestration use case.

Traceable: Cloud native applications need to support real-time troubleshooting

through Open APIs with telemetry-compatible tracing.

Loggable: Cloud native applications need to support uniform logging for

consistency and access to network-wide logs.

ANNEX 2

GitOps for cloud native applications and infrastructure

GitOps is not a single product, plugin, or platform. While the practices and patterns

in GitOps existed before Cloud Native (and the term GitOps), they happen to be a great

match for cloud native applications and infrastructure alike.

Here are some principles for GitOps (as defined by the OpenGitOps community):

Declarative - A system managed by GitOps must have its desired state expressed

declaratively.

Versioned and Immutable - The desired state is stored in a way that enforces

immutability, versioning and retains a complete version history.

Pulled Automatically - Software agents automatically pull the desired state

declarations from the source.

Continuously Reconciled - Software agents continuously observe actual system

state and attempt to apply the desired state.

GitOps generally has the following components:

A version control repository as the single source of truth for infrastructure

and application definitions.

Merge requests (or pull requests (PRs)) as the change mechanism for all

infrastructure updates.

A git (or version-controlled repository) workflow supporting automation of

infrastructure and application updates when new code is merged with continuous

integration and continuous delivery (CI/CD).

References:

https://opengitops.dev/ - The GitOps Working Group under the CNCF App Delivery

SIG.

https://www.gitops.tech/ - Collection of information on GitOps by INNOQ.

https://opengitops.dev/
https://www.gitops.tech/
https://www.innoq.com/en/

REFERENCES

1. Cloud Native Networking principles whitepaper - https://networking.cloud-

native-principles.org/cloud-native-networking-preamble

2. NGMN

NGMN publishes Cloud Native Manifesto -

https://www.ngmn.org/highlight/ngmn-publishes-cloud-native-

manifesto.html

Cloud Native Manifesto "An Operator View" (PDF)

3. Cloud Native Infrastructure by Justin Garrison, Kris Nova. Published by O'Reily

Media Inc. 2017 (ISBN: 9781491984307)

4. The Twelve-Factor App - https://12factor.net/

5. X-Factor CNFs - https://x.cnf.dev/

6. On the road to public cloud 5G networks – Nephio

7. Anuket RA2 - Kubernetes-based Reference Architecture

https://networking.cloud-native-principles.org/cloud-native-networking-preamble
https://networking.cloud-native-principles.org/cloud-native-networking-preamble
https://www.ngmn.org/highlight/ngmn-publishes-cloud-native-manifesto.html
https://www.ngmn.org/highlight/ngmn-publishes-cloud-native-manifesto.html
https://www.ngmn.org/wp-content/uploads/NGMN_Cloud_Native_Manifesto.pdf
https://12factor.net/
https://12factor.net/
https://x.cnf.dev/
https://x.cnf.dev/
https://nephio.org/on-the-road-to-public-cloud-5g-networks/
https://cntt.readthedocs.io/projects/ra2/en/latest/

ACKNOWLEDGEMENTS

Special acknowledgements go to the following Communication Service Providers, who have

contributed to this whitepaper:

Bell Canada

Daniel Bernier, Technical Director

Roger Lupien, Sr. Mgr - Enterprise Architecture, Cloud Transformation

Charter Communications

Mohammad Zebetian, Head of Cloud, Network, Edge, and Infrastructure

Architecture

Deutsche Telekom (DT)

Vuk Gojnic, Cloud Native Telco Platform Lead, DT Technik

Nathan Rader, VP Service and Capability Exposure, DTAG

DNA Oyj

Johanna Heinonen, Development Manager

Orange

Philippe Ensarguet, VP of Software Engineering

Guillaume Nevicato, Network Anticipation & Research Manager

Swisscom

Ashan Senevirathne, Product Owner Mobile Cloud Native Orchestration

Josua Hiller, Product Manager Mobile Data Services

TELUS

Andrei Ivanov, Principal Technology Architect

Sana Tariq, Ph.D - Principal Technology Architect | Cloud and Service

Orchestration

Vodafone

Tom Kivlin, Principal Cloud Architect

Riccardo Gasparetto Stori, Principal Cloud Architect

Editing and facilitation acknowledgments:

Taylor Carpenter, Vulk Coop Partner & CNF WG Co-Chair

Lucina Stricko, Vulk Coop Partner & CNF Certification Maintainer

Accelerating Cloud Native in Telco

Challenges of Cloud Native Telco Transformation today

and how to overcome them - A CSP perspective

v1.0 - December 4, 2023

